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FUZZY DIFFERENTIAL INCLUSIONS*®
V.A. BAIDOSOV

Differential equations are considered with some unknown parameters such
that there 1is, however, some information availlable about certain
preferred values of the parameters. Using a formal approach to such
information, in accordance with the theory of fuzzy sets (FS), we
introduce the notation of a differential inclusion (DI) with a fuzzy
right-hand side. The solution of a differential inclusion is defined as
the FS of motions. It is established that the level set of this FS is
identical with the bundle of solutions of an ordinary differential
equation whose right-hand side is given by the corresponding level set
of the fuzzy right-hand side. Conditions for the right-hand side of the
original differential equation and for the membership function of the FS
of parameters are stated which ensure that there exists a solution of
the DI with a fuzzy right-hand side. A special case of a controlled
linear system is considered with a matrix of coefficients defined by
means of the direct product of one-dimensional FS's. 1In this way a new
formalism for differential systems with fuzzy unknown parameters is
proposed. A connection between the theory of DI's and FS's is
established.

The origin of DI's with a fuzzy right-hand side can be illustrated by the following
example.Suppose that we have a differential equation which models a real process
= f(t, 2 k) (0.1)
where k is a vector formed by the parameters on the right-hand side of the equation. The
vector k may often be completely unknown. Moreover, k may vary according to an unknown law.
If some set K of possible values of k can be defined, then it is convenient to replace (0.1)
I
by the D e et K) ©.2)
It may happen that different points of K do not have an equal status as possible samples
of the values of k. Then, it is natural to regard K as a FS. If the function f(,z, ) is
extended onto the family of FS's in accordance with Zadeh's generalization principle /1/. we
obtain a FS on the right-hand side of (0.2).

1. Differential inclusions with a fuzzy right-hand side. We introduce the following
notation: P (X) 1is the set of fuzzy subsets of the space X /1, 2/, yup is the membership
function for a FS M, and  {py, z) 1is the value of p, at a point x.

Let an interval T é:lu, -+ 20), a domain G TxR", and a function
Y. G- P (RY) (1.1)
be given.
Definition 1. We define a DI with a fuzzy right-hand side to be the expression
=¥ () (1.2)

representing a formal symbolic relation whose essential meaning is defined by the FS of sol-
utions of (1.2).

Let i t*]1 T and let AC [y, t*] Dbe the set of absolutely continuous functions on
{ty, *], whose graph is contained in G.

Definition 2. The Fs R i, t*1 in AC [z, t*] whose membership function is defined by
the relation

{BRpty, %1 2 (1)) A e55111£] LUt s T {2)) (1.3)

1=ty t

will be called the FS of solutions of (1.2) in the interval [, t*].
From the point of view of the theory of fuzzy sets, the sense of the definition can be,
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essentially, reduced to the following. Let a family of spaces X with te s, t*] be given and
let M; be a FS in X;. The elements of the direct product X&TIX, are functions =z(} that
H

satisfy the condition =z (e X;. The direct product MLETIM, of FS's M; is defined by  the
membership function !
Qg & (+)> = infy <th, x (8>
In the case in question X¢— A" M¢="¥ (¢t,z (1)) ; and the membership degree of () in
the set of solutions of inclusion (1.2) is set to be equal to the membership degree of the
derivative = {} in the direct product IEM; to within a set of measure zero of values of f.

For a F§ ¥ in X and for ae1{0, 1], the ordinary {non-fuzzy} set defined by the relation

M2 (=X Qup 2> > a)

is called the level set M,.
We denote the level sets for the ¥S's W(f z) and R, ] by Y (. 2} and R, i,

e
i Proposition 1. For the condition
z(-) = R, [ty ] (t4)
to be satisfied it is necessary and sufficient that =z (-) be a solution of the ordinary DI
£ eY, (t 20D (1.5)
Proof. Let condition (1.4} be satisfied. then
essinfe g g x gy T Y > 2 (1.8}

We denote by 7T, the set of all t such that either ‘Bwg.gy s ()><a or the function z ()
is not defined. The set I, is a set of measure zero. Therefore,

N APTO IR O {1.7)

almost everywhere. This means that (1.5) holds almost everywhere.

Conversely, let (1.5) be satisfied for almost all £. Thus, {1.7) holds for almost all t.
Hence, it follows that inegquality {1.6) holds or Grp,, vy 200 > Therefore, condition
{1.4) is satisfied.

It follows that the level sets of the FS of solutions of the DI {1.2) are the sets of
solutions of the ordinary DI (1.5) with ae[0,4]. In this connection, it becomes an
important question whether the sets W, (f, 2} are non-empty and compact and whether the multi-
valued functions ¥, (¢, 2} are convex and semicontinuous from above.

Let us investigate the conditions under which the sets: ¥, (, #) are non-empty for all
o) =G A FS is said to be empty (), if its membership function vanishes identically.
We assume that ¥ (f,z)== (g for all (t ) <6,

Definition 3. A FS 4 is said to be regular if it is non-empty, its level sets 4, are com-
pact for @ >0, and the membership function p, is semicontinuous from above.

For a regular FS 4, there exists the max {a: 4, % J}.

Indeed, let A, =¢. Since p, 1is semicontinuous from above and 4, is compact, the

function g, reaches a maximum on A4, at some point s*. Let o L4, ot We assert that
a* = max {@ A, + O We have A+, since z*x=4,. If 2>, then 4,=g. Otherwise,
uy, 2> >a>>q* for some ze=4,, which contradicts the definition of a*.

Let

Lt 2) &max {a: W, (t 2) 5= O}

We remark that &, 2) >0 by virtue of ¥ {t, 2} (. We set g, =infe{ ( 2). Then for
all (L2)=6 and a< 4, we have ¥, (f, z)=*={. But if &> g, then there is a point (ts,
EATSH & such that [ (f, zo) <<a, and so ¥, (&, x) = .

In what follows we shall assume that a, >0, and the level sets V¥, (¢ z) will be con-
sidered for ae [0, a,J. The case [ (t, z) = const =, and, in particular, the case a, =1
should be considered separately.

A FS 4 1is said to be convex if each of its level sets is convex {/1/, p.161}. If A= is
. & . .
a family of F8°’s and 4 = [N4%, then d,={14," /1/. 1t follows that the intersection of
& o

any family of convex FS$'s is a convex FS. Let cod be an intersection of all convex FS's
containing A (the convex hull of A4). Then (cod), = co (4,).
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The following criterion can be used to establish the semicontinuity from above of the
functions ¥, (¢, z)

Proposition 2. Let [ (¢ z) = const =a,. In order that the multivalued function ¥, (¢, z)
be semicontinuous from above with respect to (Z, ) it is necessary and sufficient that

A . . .
v =< P, < YD be semicontinuous from above as a function of (t, z, y).

Proof. Suffictency. Suppose that v is semicontinuous from above must ¥, (t, z) is not.
Then the graph of ¥, is not closed and there are sequences (tns Zn) — (to, Zp)y Yn — Yo such that
In € ¥4 (ny zn) and  y & ¥g (%, @). Therefore, wv,>a and v, <a, where vm= Bw, ,mp ¥m.

Since v is semicontinuous from above for all e>0, the inequalities v,<v,+ €& hold
starting from some n. We have vo<a<xvy<v,+e Letting e tend to zero, we obtain v, <w,.

Necessity. Suppose that v 1is not semicontinuous from above at (i, %, ¥). Then there is
an e>0 and a sequence (tn, Tn, ¥n) — (fy Zo, Yo). SUch that wvp, >wv,+ e Let wv¢= 4. Then Yn E
Yo, Uny 2Zn). Therefore, y,= Ya,, (tor o) and we arrive at a contradiction: a3 a-e.

2. The DI with a fuzzy right~hand side generated by a differential equation. Let a  dif-
ferential equation

L =ft k) ¢ 2)=G k()= R 2.1

be given (k(f) is a vector of parameters (coefficients)).

Using Zadeh's generalization principle /1/, we extend the function f(t, z, ):k—f(t, 2, k)
to f(t 2, ):P(R)Y—>P(R"), For K CP(R), the membership function of the FS f, z, K)
is defined by the equality

it x k1 YD = sup {{px, Y A\ iz a0} = sup {ug kY L f(t. 2, k)= y)
k=R

Here and below /\ denotes the operation of taking the minimum. Moreover, it is assumed that

sup ¢ =0 since the values of <(pux, k> belong to [0, 1]

Let T, =1It,t*), and if (t, 2)=G then t=T,. (*may be equal to +oo.

We define a function K () on T, with values in P (R"), and for Eq.(2.1) we write down
the DI with a fuzzy right-hand side

ref(t, z K1) (2.2)
i.e., here ¥ (t, 2) X f @, z, K@)

Proposition 3. Let f(t, z, k) be a continuous function with respect to X and let K (1)
be a regular FS. Then for a >0,

fo(ty 2, K (1) =1 (¢, 2, K, ()
Proof. Let &¢>0 and yef (K. We have o' & (o .k ¥ =8up {Rggy B F( 2 k) =
v} > a. We set
MA@k prap o > d flm k) =y} =
ki ks Ko ®,f (2, k) =y}, 0 < a" <a

It follows from the ineqguality " <o that
sup {<pg oy k> ke My =4
Since pg, 1s semicontinuous from above, there is an element & & M, such that a’ = (ugq, k.

Moreover y=f(t, z, k') and & =K, () C K, (@). Therefore, y<=f(t, z, Ka ().
Conversely, let yef(t, z, Ko(t)). Then y=f(t 2, k'), where &' = K, (t). Thus,

Bpt,am Koy ¥ = 8P gy B
fit, 2z k) =yt > Rg ey K> >a

It follows that yefq(t 2 K ().

Corollaries. 1°. Let f(t, =, k) be a continuous function with respect to k and let K ()
be a regular FS. Then for a >0, the level sets f,({, z, K ()) are compact.

2°. Let f(¢, %, k) be a continuous function with respect to k and let K (f) be a
rather FS for all t. Then { (¢, z) = max {a: K, (t) & ¢},

Propostition 4. Let f(i, 2, k) be continuous with respect to (f, z, k) (with respect to
(r, k)), let K (t) be a regular FS for all ¢, and let K, (f) be a semicontinuous function
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from above with respect to t for a (0, a,). Then for ae (0, a,], the function [ (t, z, K (i)
is semicontinuous from above with respect to (4, 2z} (semicontinuous from above with respect
to ).
Wé shall give the proof in the case when continuity with respect to (, 2,k is assumed.
In the case when continuity with respect to (» & 1is assumed, the proof is analogous.
Suppose that the converse statement holds. Then we can find an open set B R™ such
that

HA (o) thaltr e, KD C B)

is not open. Thus, there is ()= H tnam & B {n=1,2,..) such that {&, =)~ (& %) We chooss
a sequence

S faltn dn KN Fhr=12..}

Let F e Keits) Dbe such that g, =7{h. e ). Since K, has compact values and. it is
semicontinucus from above, the image of a compact set {f, 4}7., under this mapping is compact

{(/3/, p.133). Thus, we can assume without louss of generality that the sequence " converges

to some & e Kq{f) Therefore, there exists g & limgn = f (fyy %, &% Since ¥n @ B, we have y, & 8,
On the other hand, ¥ =/{n % Ko () F.  We have obtained a contradiction.

Corollary. If §(t, x, £} 1is continuous with respect to {f, =, k), K {f/ =K and ¥ is a regular.
FS, then [ {f,z, K} is semicontinuous from above with respect to (f, 2} for ae= (0, gl

K {1y defined as a direct product of FS's containing the parameters of the differential
Eg.{2.1} is an important special case. Let

EOE GO ko). KO B

4=

Then (px(g), k} == (Pxiy k1> /\ cee <y*x1"m'! kr)

(Kot =11 K2y /14, po28)).

de=)

It follows that if the sete K'{i} are regular, then X () is regular.

If for a= {0, a,] the level sets K, {f) are semicontinuous from above with respect to
¥, then K, {} is semicontinucus from above with respect to #.

Indeed, suppose that this is not the case. Then, there is an open set B B* such that
the set 7,={t: Ks (1} C B} 1is not open, i.e., there are f 7, and i< T, Ssuch that & -t
Let Me K, fadNB and k= (" ... %" where p"e K, Since the functions K.t have
compact values and they are semicontinuous from above, we can assume that &® — ke Kt (5). Let
F=(%. ko) Then & -k Since it g B, it follows that K& 8. On the other hand,

.
e LK, @) =K, )
F% 1

Thersfore, =2

Propositton §. Let f{ =, %) be a continuous function with respect to £ z, &k, let K (B
be a regular ¥S, and for as&=(0, ¢,] 1let the functions K, {f) be semicontinucus from above
with respect to f. Moreover, let fi, 2 K,{#)) pe convex sets for all a& {0, q,]. In this
case, if (f,, z) &G and a= (0, ., then there is @ 4>>0 such that the set R, [ty, to + dI
of solutions of the DI &' &/, (4, 2, K (8)) that satisfy the initial condition z(f) = z, is non~
empty.

It follows from the assumptions of Proposition & and from the preceding assertions that
the right~hand side [fs {4, = KE{9)) satisfies all the assumptions of Theorem 1 of /4/ {pp. 60-61).
The proof reduces to the application of this theorem. If a domain ¢ contains the cylinder

E={t <ttt [o— gl
then we can choose ag d

d=minfe, bim}, m m{zi?}%z 11, o K

If K(@® is independent of £, then the requirement that XK { should be semicontinuous
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from above can be omitted in the formulation of Proposition 5.
As an example, consider the linear differential equation with constant coefficients

z = Az -+ Bu (8), z= R", u (t) = R*® 2.3)

where A i1s an (r X n)-matrix, B is an (n X s)-matrix and u(f) 1is a continuous function. Let
A = [a}, B = [bul and k= lay .. anny by o ., brgl. Let A¥ and B™ (i,j,m=1,...,nl=1,...,5 be
FS's given on the real axis. We denote by A the FS of matrices with the membership function
P ar A = min<p

i

4id’ aﬁ)

. . . A .
Analgously, we define the FS B of matrices. Then, setting K =4 X B, we obtain the DI
generated by Eqg.(2.3) and the set K. This inclusion can be written formally as

z e Az + Bu (t) (f(t, z, K) = Az -+ Bu (1)) (2.9

Let A4¥ and Bm™ be convex regular FS's. Then K is a regular convex FS. W& consider
the function &t 2): R"— R™ with r= a?+4 ns that transforms (A,B) into Az- Bu(f). The func-
tion is linear, hence it transforms any convex set contained in the space of coefficients R"
into a convex set in K™ Thus, the sets

fq (ts 2, K) L 4,2+ B u ()

are convex and Proposition 5 can be applied to the DI (2.4).

3. DI's whose right-hand sides are measurable with respect to t. We consider the dif-
ferential equation

@ =ftaw@) k@), tL)EGUvER, kSR 3.1)

We shall assume that f (i, «, w, k) is a continuous function with respect to ¢, z, w, k),
and w(t) is measurable with respect to t. Let a multivalued function K () be chosen.
Then we obtain the DI

e f(t, z w), K(2) (3.2)

A multivalued function F(p),pe=E is said to be measurable with respect to p if E is
a measurable set and for any closed B, the set {p:F (p) () B=# (¢} is measurable. It turns out
that the study of DI's with fuzzy right-hand sides can be reduced to the study of DI's whose
right-hand sides are measurable with respect to t.

Proposition 6. Let K (t) be a regular FS and let K, () be semicontinuous from above
for any a& (0, o). Then f, (¢ z, w(t), K(t)) 1is measurable with respect to t for any z and
a e (0, a,l.

Proof. We set Ay hih o, N E (o0 k) and ME B\ (h o Ko () =+ @} where B is a
closed set in R". he M if and only if there is &k (t)e K,z such that f, (a2, k(@) =B. Let

by 2 (o w) & M converge to  k, = (to, wo) and let fy (kn, 2, k (i}‘)) e B. Since {tr, e} p—y 1is a

compact set and K, () is semicontinuous from above and has compact values, it follows that
(U K ¢t)) U K (¢) 1is compact. Thus, we can assume without loss of generality that % () con-
n

verges to k (4) e K (). But then, fi(n, 2,k (tn)) — fy (ko, 2, k (%)) & B. It follows that hr, =M and ¥
is a closed set.
We denote by T, the set of those t for which

BNz w(®), Ke () =

T, is identical with the set of those ¢ for which r(H & (,w@) =M. Since w () is a
measurable function, k(@ 1is measurable (/5/, p.82). It follows that 7, is a measurable
set.
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CONTROL OF THE MOTION OF A SOLID ROTATING ABOUT ITS CENTRE OF MASS*
D.B. LEBEDEV

Problems of controlling the spherical motion of a rotating solid when the
controlling torques delivered to the body by the controls do not contain
an x-component and their axes are not the principal central axes of
inertia of the body are investigated. It is shown that as the transverse
components of the angular velocity vector are suppressed and the
orientation of the non-principal axis of inertia of the body stabilizes,
there is an accompanying drop in the angular velocity of twist and, in
the final analysis, the rotating body loses its gyroscopic properties.
On the other hand, control of the uniform rotation of the body about a
principal axis of inertia and of 1its orientation in  inertia
space excludes a marked dynamical effect. Control algorithms are
porposed to guarantee stability of the relevant motions of the body when
the control parameters are subject to constraints. The efficiency of
these solutions is confirmed by modelling experiments.

1. Statement of the problem. We introduce three right-handed Cartesian coordinate systems,
all with origin O at the centre of mass of the solid: a rigidly attached system zy2, whose
axes do not coincide with the system z,Y42, of the principal central axes of inertia of the
body, and an inertial coordinate system XYZ.

The relative positions of the xyz and z,y,%z, bases are characterized by angles @,V
and ¢ {(Fig.l). The representation r of a vector R in the xy2 basis is expressed in terms of
its representation r, in the a,y,z, basis by the formula

r =Br*, B = {ﬁij} (i7 ] = 11 21 3)
(B is the matrix of direction cosines).

Describing the rotary motion of the solid body in the xyz
basis by the dynamical Euler equations

Jo' + o X Jo =M, 0 = {0, o, 0} .1

we note that the inertia matrix J is related to the inertia matrix
Jx = diag {J1, Jo, T3} in the z,y.3, Dbasis by the expression
J =BJ. B’

To fix our ideas, we shall assume that J, <<J,<{J, (the
prime in the formula denotes transposition).

It is assumed that the motion of the body is observed in the
rigidly attached coordinate system xyz; the controlling torque
M in that system has the following structure: M= {0, M, M,).

Let & and 7 denote fixed unit vectors in the gyz basis and
the XYZ inertial space, respectively. The motion of 7n relative
to the rigidly attached coordinate system is governed by the

equation .
N +oXxXxn=0 (1.2)

Assume that an angular velocity o, = @ (]| o, ], |w, | << Q) is imported to the body.

In view of the special structure of the controlling torque M, the effect of the control
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