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FUZZY DIFFERENTIAL INCLUSIONS* 

V.A. BAIDOSOV 

Differential equations are considered with some unknown parameters such 
that there is, however, some information available about certain 
preferred values of the parameters. Using a formal approach to such 
information, in accordance with the theory of fuzzy sets (FS), we 
introduce the notation of a differential inclusion (DI) with a fuzzy 
right-hand side. The solution of a differential inclusion is defined as 
the FS of notions. It is established that the level set of this FS is 
identical with the bundle of solutions of an ordinary differential 
equation whose right-hand side is given by the corresponding level set 
of the fuzzy right-hand side. Conditions for the right-hand side of the 
original differential equation and for the membership function of the FS 
of parameters are stated which ensure that there exists a solution of 
the DI with a fuzzy right-hand side. A special case of a controlled 
linear system is considered with a matrix of coefficients defined by 
means of the direct product of one-dimensional FS's. In this way a new 
formalism for differential systems with fuzzy unknown parameters is 
proposed. A connection between the theory of DI's and FS's is 
established. 

The origin of DI's with a fuzzy right-hand side can be illustrated by the following 
exanple.Suppose that we have a differential equation which models a real process 

I. = f (f, 5, k) (0.1) 

where k is a vector formed by the parameters on the right-hand side of the equation. The 
vector k may often be completely unknown. Moreover, k may vary according to an unknown law. 
If some set K of possible values of k can be defined, then it is convenient to replace (0.1) 
by the DI 

2' = f (t, z, 4 (0.2) 

It may happen that different points of K do not have an equal status as possible samples 
of the values of k. Then, it is natural to regard K as a FS. If the function f (t, z, .) is 
extended onto the family of FS's in accordance with Zadeh's generalization principle 111. we 
obtain a FS on the right-hand side of (0.2). 

1. Differentid incZusions with a fuzzy right-hand side. We introduce the following 
notation: P(X) is the set of fuzzy subsets of the space X /l, 2/, pnr is the membership 
function for a FS M, and <PM, x> is the value of pM at a point 2. 

Let an interval T k ll,, +-), a domain GC TvR”, and a function 

Y : G -1 P (R”) (1.1) 

be given. 

Definition 1. We define a DI with a fuzzy right-hand side to be the expression 

z' E Y (6 5) (1.2) 

representing a formal symbolic relation whose essential meaning is defined by the FS of sol- 
utions of (1.2). 

Let It,, t*l C 2’ and let AC It,, t*l be the set of absolutely continuous functions on 

it,, t*l, whose graph is contained in G. 

Definition 2. The FS R It,, t*l in AC Lt,, t*I whose membership function is defined by 
the relation 

will be called the FS of solutions of (1.2) in the interval It*, t*]. 
From the point of view of the theory of fuzzy sets, the sense of the definition can be, 
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essentially, reduced to the following. Let a family of spaces xt with TV b,,t*l be given and 

let MS be a FS in Xf. Theelements of the direct product XS EX, are functions z (*f that 
t 

satisfy the condition i (8) E Xt. The direct product &f%fltNe of FS's Mt is definea W the 

membership function 
<P&l1 z (*)> = mft q$+ 8 V), 

In the case in question xt = P, Mlt = Y (t, z (Q) , and the membership degree of 5 (-1 in 
the set of solutions of inclusion (1.2) is set to be equal to the membership degree of the 

derivative 2' C.1 in the direct product fMf to within a set of measure zero of values of t- 

For a FS 84 in X and for a f m 179, the ordinary {non-fuzzy) set defined by the relation 

MO& (x~X:<~~~,x)e> a} 

is called the level set MD. 
we denote the level sets for the FS's U'@, 4 and Ii It,, PI by u', @* 4 and R, w*, 

t+I_ 
Proposcs3n I. For the condition 

2 (~) E J& R*, f"1 (~4 

to be satisfied it is necessary and sufficient that x (*) be a solution of the ordinary DI 

d (E) E Y* 0, * 0)) (1.5) 

PPCX?~. Let condition (1.4) be satisfied. then 
e&n& ij+tprits zjtjP 2' @1> > B fW 

We denote by T;the set of all t such that eithex '!-+(l,X@)JI =* (tl) <a or the function ~‘14 

is not defined. The set T,, is a set of measure zero. Therefore, 

(Pruct,zct,,t 3' (9) >r a (1.7) 

almost everywhere. This means that (1.5) holds almost everywhere. 
Conversely, let (1,5) be satisfied for almost all t. Thus, (1.7) holds for almost all t. 

Hence, it follows that inequality fl.6) holds or W%[a,,*qI = f-1) a a* Therefore, condition 
(1.4) is satisfied. 

It follaws that the level sets of the FS of solutions of the DZ (1.2) are the sets of 
solutions of the ordinary DI (1.5) with a E[O, 11. In this connection, it becomes an 
important question whether the sets y.9 (4 4 are non-empty and compact and whether the multi- 
valued functions YY, 0, 4 are convex and semicontinuous from above. 

Let us investigate the conditions under which the sets* !Fa',ftr x) are non-empty for all 
(t9 zj E G. A FS is said to be empty (@), if its membership function vanishes identically. 
We assume that Y (6 4 St 0 for all (t, rf E G. 

Definition 3. A FS A is said to be regular if it is non-empty, its level sets A, are com- 
pact for a>o, and the membership function pA is semicontinuous from above. 

For a regular FS A, there exists the max(a: A,+ a}. 
Indeed, let A,.=/=@. Since ~"a is semicontinuous from above ana dGr is compact, the 

function &&a reaches a maximum on A,$ at some point x8. Let a* 4i* -4, Z">. We assert that 

& = max {a: A,=+ s;i* We have &*#a, since z+':EA,+. If a>**, then A,= @. Otherwise, 
(CtA9z))/a>a' for some a! E A,,, which contradicts the definition of a*. 

Let 
5(t,,z)22max{a :YYa(t,s)+@} 

we remark that 5 (1, z) >O by virtue of '4 ft. x) + 0. We set a, ==i& P, (t+ x), Then for 
all (t,xf~G and a< % we have Yix 0, 4 f e. But if @>I%*, then there is a point (t,, 
G)E & such that 5 (tc,&) < a, and so 'ih (to, x0] = @. 

In what follows we shall assume that a,30, and the level sets Y,(t,z) will be con- 
sidered for a E [O, a*]. The case 5 (t, 3) SzE const = a, and, in particular, the case a, = 1 
should be considered separately. 

A FS A is said to be convex if each of its level sets is convex f/l/, p-161). If Aa is 

a family of FS's and n 4 &$a, then A, = nAa= /Ial. It follows that the intersection of 
a a 

any family of convex FS's is a convex FS. Let co.4 be an intersection of all convex FS's 
containing A (the convex hull of A). Then (coA), = co(A,). 
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The following criterion can be used to establish the semicontinuity from above of the 
functions Y,(t, I) 

Proposition 2. Let G(t, r) = const = a,. In order that the multivalued function y', 0, 4 
be semicontinuous from above with respect to (11 4 it is necessary and sufficient that 

* 
v = < PY(k X)9 Y> be semicontinuous from above as a function of (t,x, y). 

Proof. Sufficiency. Suppose that Y is semicontinuous from above must YY, (G 2 ) is not. 
Then the graph of Y, is not closed and there are sequences (k %) - (to, 4, Yn - Yo such that 
Yn E 'y, &I, 4 and Yo = I, (to7 50). Therefore, v, > a and y0 <a, where vm = (P\Y(&+n)* Y,). 

Since v is semicontinuous from above for all e>O, the inequalities %l<~Ol- e hold 
starting from some n. We have %<a<%,<v,+e. Letting e tend to zero, we obtain v0 <vg. 

Necessity. Suppose that v is not semicontinuous from above at (t,,z,,y,). Then there is 
an e>0 and a sequence (t,,s,, y,,) - (to,, zO, yO) such that v, >/Y~ + e. Let v0 = (1. Then y,~ 
Y a+e (k 4. Therefore, Yo E yY,+, (to? 20) and we arrive at a contradiction: a>a$e. 

2. The DI with a fuzzy right-hand side generated by a differential equation. Let a dif- 
ferential equation 

x' = f (k 5, k (t)h (t, x) E G, k (t) E R’ (2.1). 

be given (k(t) is a vector of parameters (coefficients)). 
Using Zadeh's generalization principle /l/, we extend the function f(t, I, .):k+f(t, X, k) 

to f (t, x, *) : P (R’) - p (Rn). For KCP(r), the membership function of the FS f (t, x, K) 
is defined by the equality 

<Pt(tsx,m~ Y) = kszp {(PK, k> /“I <&(t,x,k,r. y>) = sup {(kr k) : f (t, 2, k) = y) 

Here and below /j denotes the operation of taking the minimum. Moreover, it is assumed that 

sup Qr = 0 since the values of (px, k) belong to IO,, 11. 
Let T, = it,, t*), and if (t, x) E G then t= T,. t*may be equal to +m. 
We define a function K(t) on 

the DI with a fuzzy right-hand side 

i.e., here Y (t, x) A f (t, x, K (t)). 

Proposition 3. Let f (t, x, k) 
be a regular FS. Then for a> 0, 

T, with values in P (R'), and for Eq.(2.1) we write down 

i fz f (t, x, K (t)) (2.2) 

be a continuous function with respect to k and let K (0 

f, (t, x> K (t)) = f (t, x, K, (0) 

Proof. Let a>0 and Y E fl (6 s* K (t)). We have 
Y)>a. We set 

a' kz 'P'lu,X,~(tjj, Y) = SUP {(&xuj, k) : f (t, 2, Y) = 

M 4 {k : (pKtt), k) > a”, f (t, 2, k) = Y) = 

(k:keK, (t),f(t,+,k)=~),O<~‘<Q 

It follows from the inequality a" < 4' that 

sup {(pKuj, k> : k E M) = a’ 

Since ILK (0 is semicontinuous from above, there is an element k’= M, such that a' = +KLX(t,, k’). 

Moreover y = f (t, Z, k’) and k' = K,. (t) c K, (t). Therefore, Y E f @, 2, K, (0). 
Conversely, let Y E f (t, z, Ka (t)). Then Y = f (t, s,k’), where k’ E K. (t). Thus, 

It follows that Y E fa (t. z, K (0). 

CoroZZaries. lo. Let f(t, z, k) be a continuous function with respect to k and let K (1) 
be a regular FS. Then for a>O, the level sets f, (tt x, K (t)) are compact. 

2". Let f @, *, 4 be a continuous function with respect to k and let K(t) be a 
rather FS for all t. Then c (t, x) = max {a: K,(t) # 01, 

Proposition 4. Let f(t,x, k) be continuous with respect to (t,x,k) (with respect to 

(5, k)), let K 0) be a reguLar FS for all t, and let K,(t) be a semicontinuous function 



from above with respect to t 
is semicantinuaus from above 

a E (0, a,J , the functictn fe (t, x, K (E)) 
semicontinuous from above with. respect 

to 23 . 
WP shall give the proof in the case when continuity with respect. to tt* *, 8 is assume& 

In the case when continuity with respecr: t5 (z,k) is assumed, the proof is analogous. 

Suppose that the converse statement holds. Then we can find an apen set BtLRn such 

that 

If h {@, 3 I En (t* 2, K (6)) c J-q 

Let kn E ~~~~~~ BP; SU& that gtn = f (tn, s-7 TPj~ Sifice Kc? @I has compact values and.it is 

Sem~cont~nu~us fram above, the image of a comgact set (tnrrOj;ll undr?r this mapping is compact 

t/3/, P-133). Thus" WES can assume without Zrrss of generality that the sequence kn converges 

ta some k” E I& (to). %lerefore, there exists #Q % lim Y.= = f (6, so, k*f. Since 6m @ 8 we have Y8 622B. 

On the other hand, Y, = f @I?* %2,, &3 (4)) c B. W3 have obtained a contradiction, 

~ff~~~~~~. If f@, ;r, laf is c~nt~n~cus with respect to (t* L, k)> X@)%:li: and k: is a regular. 

FS, then &(tts, If) is semicontinuous from above with respect to (8,~) for ~G=(Q,@ 

fi: @f defined as a direct Product of FS's ~ont~i~~n~ the Parameters of the differential 
Ep.f2.1) is an important special case, Let 

ft: fallaws that if the sets X* ft) are regular, then X (6) * is regular. 
If far a E (0, a*1 the level sets i”;,” (f) are semie~ntinuaus from above with respect to 

t, then I&(t) is semicontinuous from ahove with respect to t. 
Indeed, suppose that this is not the case. Then, there is an open set B~ft' such that 

the set To= (t :KaftfcB) is not open, i.e., there are :o = 3H and &4 e r, such that tn -4 $0. 
Let k” E K, (tn) \ 5 atId k” - DEln, . . .* k,‘) ?dl@.?t+~ kin 6s~ Ra’ (t,& Since the functions I&( (6) baVe 
compact VakXeS and they !23? SemiContkWOUS fRXl3 above, W3 CG%El assume i&at ki*dki’e &‘fZ& LiSti 
k’ = [kx”, . . ., kr”). Then Ir” .-.+ V. Since kn @ 23, it Eollaws that k” F& 23. On the othel: hand, 

Therefore f v s .a* 

~~#~S~~~O~ 5, Let f(&rc, 4%) be a continuous function with respect to &,z,k, let K(t) 
be a regular FS, and for a~ (0, id,3 let the functions .&(t) be semicontinuous from above 
with respect to t. Moreover, let f(t,.Z &(t)) be convex sets far a23. UE(0, a,]. In this 
case, if (to, x0) E G and a E (0, a,], 
af solutions af the DL 

then there is a d>O such that: the set R, [4,, ta -I- d 
i~:f,(t,x, K(t)) that Satisfy the initial condition X(&J = z. is aon- 

empty. 
It: foliuws from the assumptions of Prq~~Gtion 5 and from the pxetceding assertions that 

the right-hand side f~@,z,‘Kjt)f satisfies al.3 the assumptions of Theorem 1 of j4J fpp. 60-61). 
The proof reduces to the application of this theorem. If a domain G contains the cylinder 

z = f(G =I : t 4 d g 42 f G i + - % i g 61 

then we can chaose as d 

If K (t) is independent 



from above can be omitted in the 
As an example, consider the 

formulation of Proposition 5. 

where A is an (nx n)-matrix, B 

linear differential equation with constant coefficients 

z:' = AZ + Bu (t), z E fin, u (t) E RS (2.3) 

is an (n x Q-matrix and u(t) is a continuous function. Let 

A = [atjl, B = Lbm11 and k = lull, . . ., annr b,,, . . ., b,,J. Let Aa3 and Eml (i,j,m= 1,...,n; Z= i,...,s) be 
FS's given on the real axis. We denote by A the FS of matrices with the membership function 

(~~4, A) =min (Cl,ij> aij) 
z,i 

Analgously, we define the FS B of matrices. Then, setting KAAABB, we obtain the DI 
generated by Eq.(2.3) and the set K. This inclusion can be written formally as 

z' E AZ + Bu (t) (f (t, z, K) = Ax + Bu (t)) (2.4) 

Let Ai' and Uml be convex regular FS's. Then K is a regular convex FS. We‘ consider 
the function 5 (t, z): R’ - Rn with r= ne+ ns that transforms (i.B) into :is+ Bu(t). The func- 
tion is linear, hence it transforms any convex set contained in the space of coefficients Rr 

into a convex set in Hn. Thus, the sets 

f, (t, 2, K) ” .Q + Bau It) 

are convex and Proposition 5 can be applied to the DI (2.4). 

3. DI’s whose right-hand sides are measurable with respect to t. We consider the dif- 
ferential equation 

z' = f (4 x7-w (4 k (t)), (6 z) E G, w cz II”, k E R’ (3.1) 

We shall assume that f(t, x, W, k) is a continuous function with respect to (t, x, w, k), 
and w (t) is measurable with respect to t. Let a multivalued function K(t) be chosen. 
Then we obtain the DI 

r' E f (t, z, w (0, K (4) (3.2) 

A multivalued function F(p),p EE is said to be measurable with respect to p if E is 
a measurable set and for any closed B, the set {p:P(p) n B# IT} is measurable. It turns out 
that the study of DI's with fuzzy right-hand sides can be reduced to the study of DI's whose 
right-hand sides are measurable with respect to t. 

Proposition 6. Let K (t) be a regular FS and let K,(t) be semicontinuous from above 
for any a fz (0, a.J . Then f, (1, I, w (t), K (t)) is measurable with respect to t for any x and 

a E (0, a*]. 

Proof. We set h !% (t, UJ), f1 (h, z, k) 5 f (t, z, w, k) and Mz(h: B n fl(h,z,K,(t))# 0 j where B is a 
closed set in Rn. h=M if and only if there is k (t) E A, (t! such that fl (h 5, k (t)) E B. Let 

h, 0 (tn. wn) E M converge to h, != (to. mg) and let k (hn, 5, k (tn)) E B. Since {tn, to);=r is a 

compact set and K,(t) is semicontinuous from above and has compact values, it follows that 
((J K (tn)) U K (to) is compact. Thus, we can assume without loss of generality that k (tn) con- n 
verges to k (to) E K (to). But then, fl CL, 2, k CL)) -, fl (h,, z, k (to)) E B. It follows that h, E M and M 
is a closed set. 

Wedenote by T, the set of those t for which 

B fl f (t. 5, w (t). K, (t)) i 0 

T* is identical with the set of those t for which h (t) g (t. w (t)) E M. Since m (t) is a 
measurable function, h (t) is measurable (/5/, p.82). It follows that T, is a measurable 
set. 

1. 

2. 

3. 
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CONTROL OF THE MOTION OF A SOLID ROTATING ABOUT ITS CENTRE OF MASS* 

D.B. LEBEDEV 

Problems of controlling the spherical motion of a rotating solid when the 
controlling torques delivered to the body by the controls do not contain 
an x-component and their axes are not the principal central axes of 
inertia of the body are investigated. It is shown that as the transverse 
components of the angular velocity vector are suppressed and the 
orientation of the non-principal axis of inertia of the body stabilizes, 
there is an accompanying drop in the angular velocity of twist and, in 
the final analysis, the rotating body loses its gyroscopic properties. 
On the other hand, control of the uniform rotation of the body about a 
principal axis of inertia and of its orientation in inertia 
space excludes a marked dynamical effect. Control algorithms are 
porposed to guarantee stability of the relevant motions of the body when 
the control parameters are subject to constraints. The efficiency of 
these solutions is confirmed by modelling experiments. 

1. Statement of the problem. We introduce three right-handed Cartesian coordinate systems, 
all with origin 0 at the centre of mass of the solid: a rigidly attached system xycyz, whose 
axes do not coincide with the system z*y,z, of the principal central axes of inertia of the 
body, and an inertial coordinate system XYZ. 

The relative positions of the xgz and %&% bases are characterized by angles fi,$ 
and cp (Fig.1). The representation r of a vector R in the xyz basis 
its representation r* in the X*Y*Z* basis by the formula 

r = Br,, B = {Pi)} (i, j = 1, 29 3) 
(B is the matrix of direction cosines). 

Describing the rotary motion of the 
basis by the dynamical Euler equations 

Fig.1 

is expressed in terms of 

solid body in the xyz 

Jw’ f o x Jo = M, o = {co,, q,, co,} (1.1) 
we note that the inertia matrix J is related to the inertia matrix 

J, = diag {Jr, J,, J,l in the "*Y*Z* basis by the expression 

J = BJ,B’ 

To fix our ideas, we shall assume that J, <J, <J3 (the 
prime in the formula denotes transposition). 

It is assumed that the motion of the body is observed in the 
rigidly attached coordinate system xys; the controlling torque 
M in that system has the following structure: M = (0, My, Mz). 

Let 5 and n denote fixed unit vectors in the xyz basis and 
the XYZ inertial space, respectively. The motion of 11 relative 
to the rigidly attached coordinate system is governed by the 
equation 

(1.2) 

Assume that an angular velocity o, = 61 ( ) coy Id ( wz ) <Cd) is imported to the body. 

In view of the special structure of the controlling torque M, the effect of the control 
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